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Abstract
Over the last decade there have been significant advances in
computation, data management, and algorithms, which have
enabled large-scale use of machine learning (ML). Many
fields of research and practice now use ML as a core ve-
hicle for progress, yielding results that are bordering on rev-
olutionary (e.g., computer vision and natural language pro-
cessing). Yet, somewhat ironically, advances using ML for
programming have not seen progress on a similar scale.

In this paper, we present the BF-Programmer system,
which uses a genetic algorithm, a specific type of ML, to au-
tonomously develop software programs given minimal hu-
man direction. We show that using a well-suited program-
ming language as its foundation, the BF-Programmer system
can autonomously generate a wide variety of simplistic pro-
grams. We also discuss numerous attempts to autonomously
generate software programs, prior to the development of BF-
Programmer, which had varying degree of success.

Keywords Genetic algorithm, Program synthesis, Genetic
programming, Evolutionary computation, Esoteric, Brain-
fuck, Artificial intelligence, Machine learning, Program-
ming languages

1. Introduction
Since the invention of the computer, having the ability to cor-
rectly and efficiently develop software programs has been
a principle challenge [4]. To help address this, countless
breakthroughs have been made in the field of software de-
velopment. Some of these include safety and flexibility ad-
vances in static, dynamic, and gradual type systems [3, 27];
simplification, safety, and robustness advances using au-
tomatic memory management and garbage collection sys-
tems [5, 12]; generality and specificity progress in both
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general-purpose and domain specific languages [26, 29];
and, of course, a plethora of tools aimed at assisting pro-
grammers in nearly every way imaginable [9, 10, 24].

Yet, simultaneous advances in hardware innovation have
occurred with similar frequency, such as increasingly per-
formant general purpose multi-core CPUs with advanced
hardware extensions [18, 31], low power system-on-chip
(SoC) edge compute devices [13], high-performance plug-
gable coprocessors with near supercomputing performance
of yesteryear [11], wide data-parallel graphics processing
units (GPUs) [22], and application specific integrated cir-
cuits (ASICs) for deep neural networks and computer vi-
sion [1, 28], to name a few. While such hardware advances
continue to broaden and deepen the space of what is com-
putationally tractable, they have the fracturing side-effect of
complicating and exacerbating the tension between the ease
of software programmability and the ability for human pro-
grammers to generate maximally efficient code.

Within this context, it can be argued that the process
of human-focused software development has moved from
a problem of reasonable complexity to one of intractability
due to the sheer volume of heterogeneous hardware compo-
nents and software complexity. It is for this reason, that we
believe a fundamental shift must be made in the way we de-
velop software. Humans may no longer be capable building
software that manages both the correctness associated with
the complex hardware computational interactions while si-
multaneously achieving near peak performance for such de-
vices. Instead, we believe that computers should drive the
development of software, with humans specifying only the
minimal amount necessary to achieve the goal. In this paper,
we present early research along these lines.

1.1 The Evolution of Programming Languages
Over the last several decades, programming languages have
followed a steady path of providing more simplistic and
higher-level programming abstractions, aimed at reducing
the challenge of software development for humans. From
the lowest level of binary code to the increasingly higher-
level abstractions (e.g., Assembly to BASIC to C to Java
to Python, etc.), programming languages have proliferated
a design goal of facilitating human use. Although this trend
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is natural in an era where humans perform the majority
of software development, we argue that it is suboptimal
in an environment where the majority of programming is
performed by machines.

The notion of computers automatically creating their own
software programs has been a long-standing goal of comput-
ing technology and artificial intelligence [25]. By removing
humans from the time-intensive and error-prone process of
software development, computer software has the potential
to be generated in a completely automated, streamlined, and
more correct and optimized fashion [6, 16].

As we show through experiments presented in this pa-
per, we believe languages that are best aligned for ML-based
programming are fundamentally different than those for hu-
mans. We propose that ML-aligned languages are ones that
(i) not unexpectedly, provide support for the broadest num-
ber of possible program solutions (i.e., Turing complete-
ness [30]), (ii) facilitate a high likelihood of generating func-
tional programs from random sequences of their instruction
set, and (iii) are exceptionally succinct, containing the mini-
mal number of instructions to satisfy (i) and (ii) making them
uniquely unfit or ill-advised for use by humans. We provide
a deeper analysis of this exploration throughout the paper.

This paper makes the following technical contributions:

1. We present BF-programmer, a system that autonomously
generates software using an ML-suitable programming
language along with genetic algorithm techniques.

2. We provide technical exploration and evaluation criteria
for programming languages that make them less or more
amenable to ML-based software generation.

2. The Problem with Programming
Languages

At the highest level, we believe one of the fundamental
limitations using today’s programming languages for au-
tonomous program generation is that they were intended for
human use, not machine use. This intention of design is a
fundamental restriction in the expressiveness of many pro-
gramming languages when used in concert with ML-based
program generation. In this section we highlight some of
these details by providing a brief exploration of some of our
early experiments in this space.

2.1 An Early Failure with BASIC
In the early stages of this project, we began researching soft-
ware program generation using the programming language
BASIC, with nothing more than if-then conditionals. In the
end, this experiment was ultimately a failure, however, it in-
spired and refined our thinking and pushed us to consider
alternative, and eventually, workable solutions. We brief dis-
cuss the highlights of our experimentation with BASIC be-
low.

Lack of generality First, conditional branches are unable
to handle a large variety of computing tasks. In addition,
static branching cannot anticipate the changing needs of a
dynamic programming environment. As such, the approach
we first explored which used embedded logical conditionals
could only provide a fixed solution for a specific set of pre-
determined tasks and would be incapable of generalizing on
different or evolving program spaces. While useful for fixed
programs, such solutions are limited in terms of generality.

Large syntactical combinations To accommodate the com-
position of prose, many programming languages are defined
with flexible syntaxes that provide numerous legal combi-
nations and can be read much like complete sentences (e.g.,
if-else statements) or even paragraphs (e.g., flow control
like for or while loops). While this approach is amenable
to human writing, it can create significant complexity for
machine learning program generation. Furthermore, some
instructions within programming languages are potentially
harmful and if used in experimentation for ML-based pro-
gram generation may cause irreversible damage.

A key benefit of using a programming language that has
a reduced instruction set is that it allows the state space of
any program to be explored more easily by an ML model
which has the side-effect of reducing the complexity of gen-
erating syntactically legal and functionally correct programs.
In other words, the larger the language’s unique instruction
set, the greater the density of the program’s combinatorial
search space for a given program. Such density exacerbates
the challenge of not only building functionally correct pro-
grams, but also, more trivially, syntactically correct ones.

2.2 Program Synthesis at the Instruction Level
After our experiment with BASIC, we shifted away from us-
ing a higher-level programming language’s instruction set
and instead tried an inverted approach starting at the byte-
level. In essence, rather than using a pre-existing program-
ming language, we aimed to understand what was required
to successfully generate a simplistic program by piecing one
byte together at a time. Our working hypothesis was simple:
there is a certain representation of bits that when combined
together will result in an executable program and correct so-
lution for any given task. The goal then is simply to find the
correct corresponding combination of bits.

Because the number of bit combinations can be extremely
large, the search space for finding the correct sequence of
bits can become a computationally intensive task. To mit-
igate this, a method was required for narrowing down the
search to allow for program generation within a reasonable
time constraint. We hypothesized that by using genetic al-
gorithms, we could potentially guide the search in order to
locate a working series of bits, resulting in successful pro-
gram generation.
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2.3 A Brief Introduction to Genetic Algorithms
A genetic algorithm (GA) is a type of artificial intelli-
gence, modeled after biological evolution, that begins with
no knowledge of the subject, aside from an encoding of
genes that represent a set of instructions or actions [7]. In
the concept of GA-driven computer programming, a series
of programming instructions are selected at random to serve
as an initial chain of DNA. The complete genome is exe-
cuted as a program, with the resulting fitness score calcu-
lated according to how well the program can solve a given
task. This is performed with a sufficiently large population
size. Those that have the best fitness are mated together to
produce offspring.

Each generation of programs receive extra diversity
from evolutionary techniques, including roulette selection,
crossover, and mutation [20]. The process is repeated at
each epoch, with each child generation hopefully produc-
ing more favorable results than its parents’ generation until
a target solution is found. Through this process, applying
GAs to computer programming automation enacts a survival
of the fittest model for computer program generation [19].
A deeper examination of these GA principles are provide in
Section 4.

2.4 Bit-level Manipulation of an Executable
We had initially considered using GAs to programmati-
cally modify a template executable file, directly altering bits
within the executable’s code and evaluating the resulting
program behavior. However, this was deemed an unreason-
able task, as changing random individual bits frequently ren-
dered an executable as corrupt. Further, a corrupt executable
has no way of offering granular feedback to indicate how
better or worse the changed bits are, leaving us unable to
determine the suitability of a resulting sequence of bits for
producing a program to solve a given task.

Still, the idea of using GAs to search a space of available
instructions seemed a reasonable process, provided we could
locate a simplistic programming language instruction set,
similar to bit-level instructions, that would more easily allow
for feedback during the generation process.

3. Introducing BF-Programmer
Although our early experiments attempting to generate pro-
grams using BASIC and bit-level manipulation of executable
files were limited in generality or failed, outright, those ex-
periments led us to the hypothesis that a notable limitation
in applying ML techniques in automatic program generation
was in the size of the vocabulary of a given programming
language. In essence, we believed that the smaller the pro-
gramming language’s unique vocabulary, the more likely we
would be able to generate meaningful results.

To test this hypothesis, we developed a rudimentary pro-
gramming language consisting only of add, subtract, loop,
and print instructions. We then tried to autonomously gen-

erate programs with it using genetic algorithms and neural
networks. Although simplistic, this approach was a success.
Unfortunately, the generated programs were too simplistic
to warrant further exploration. However, this success rein-
forced our notions needed a programming language with a
simplified instruction set, leading us to Brainfuck.

Brainfuck (BF) is an esoteric programming language,
which is widely considered a joke [21]. Although BF was
not intended for actual programming, we found it to be
highly amenable for use in automatic program generation
when coupled with genetic algorithms. An example pro-
gram, generated by our GA program generation system us-
ing BF, called BF-Programmer, is shown in Figure 1.

+-+-+>-<[++++>+++++<+<>++]>[-[---.--[[-.++++

[+++..].]]]]

Figure 1. BF program that outputs “hello”.

BF was created as a joke programming language and is
nearly impossible to use meaningfully by humans, yet, it has
several distinct advantages when used for automatic com-
puter program generation using ML techniques. We discuss
some of these below.

Turing Completeness A Turing complete programming
language is theoretically capable of completing any (single
taped Turing machine) programming task given an unlimited
amount of time and memory [30]. In essence, a program-
ming language with this characteristic is capable of imple-
mentations of a vast number of programming problems.

The BF programming language is Turing complete. Like-
wise, programs implemented with it, or in our case, gener-
ated with it, are theoretically capable of expressing all tasks
that one might want to accomplished with computers.

Simplified Instruction Set The instruction set for BF con-
sists of 8 programming instructions, as shown in Table 1.
These instructions manipulate a memory ”tape” of byte val-
ues, ranging from 0-255. BF works by applying increment
and decrement operations to the current memory cell, while
shifting the memory cell up and down the tape, as instructed
by the program. The values at the current memory pointer
can be input from the user or output to the terminal. Primitive
instructions for looping are also available, offering the BF
programming language a complete instruction set for creat-
ing software.

The simplified instruction set reduces the search space
in which a target program code can be found. As compu-
tational devices improve in speed, larger problem spaces can
be searched. However, on less powerful devices, the search
space needs to be constrained. By limiting the programming
instruction set to 8 unique characters, a genetic algorithm en-
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Figure 2. The BF-Programmer Software Architecture.

gine can run significantly faster to obtain an optimal fitness
score than using a more verbose instruction set. 1

3.1 The Benefits of a Self-Developed Interpreter
BF-Programmer must execute the programs that it generates
to evaluate them. As such, because of the small size of the
BF instruction set, we developed our own BF interpreter,
which we then embedded within the GA engine, itself, re-
sulting in a reduced total execution time of the code gener-
ation evaluation compared to when the GA system had to
make external calls to a BF compiler to execute each child
program.

Aside from reduced execution time, our self-developed
interpreter provided us with security constraints, as child
programs were executed within a controlled environment
in the engine. Our fitness scoring also took advantage of
the internal components of the interpreter, such as memory,
instructions, and output. This was useful in calculating a
more granular fitness score, allowing BF-Programmer to
incrementally generate better child programs.

BF-Programmer’s genetic algorithm engine represents
each generated program’s instructions as an array of double-

1 A reduced instruction set can drastically decrease the time it takes to
generate a computer program using an ML algorithm. However, due to
limited space we have opted to present program generation results instead
of ML performance generation results.

Table 1. BF-Programmer Instruction Set and Gene Map

Instr Gene Range Operation

> [0, 0.125] Increment the pointer
< (0.125, 0.25] Decrement the pointer
+ (0.25, 0.375] Increment the byte at the pointer
- (0.375, 0.5] Decrement the byte at the pointer
. (0.5, 0.625] Output the byte at the pointer
, (0.625, 0.75] Input a byte and store it at the ptr
[ (0.75, 0.875] Jump to matching ] if current 0
] (0.875, 1.0] Jump back to matching [ unless 0

precision floating point values, which, when considered as a
unit, is its genome. An individual location within a given
genome is called a gene. Each gene within a program’s
genome corresponds to a single instruction from the BF pro-
gramming language as shown in Table 1.

4. The Design of BF-Programmer
A high-level overview of the BF-Programmer software ar-
chitecture, which utilizes all elements discussed within this
section, is shown in Figure 2.
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4.1 Genomes and Generations
To generate a software program using genetic algorithms,
one must first create a genome. A genome is a set of
genes that are grouped together as a single unit. For BF-
Programmer, the genome is encoded as an array of floating
point values, with fixed value ranges per unique instruction
ranging between 0 and 1, as shown in the Gene Range col-
umn of Table 1.

Once a genome is created, it is converted to a correspond-
ing program, executed, and the resulting program is assigned
a fitness score based on the program’s output. The closer a
generated program comes to solving the provided task, the
greater its fitness score and, the more likely it is to con-
tinue to the next evolutionary generation. At each genera-
tion epoch, BF-Programmer utilizes roulette selection, along
with crossover and mutation, to create child programs that
contain slight random perturbations, and potentially better,
genomes than their parents for solving the target task.

Constructing a Genome Figure 3 demonstrates an exam-
ple of constructing a genome from an array of floating point
values. Each value range maps to a specific instruction in the
BF programming language. Initially, these values are ran-
dom (see the Random Gene Sequencer in Figure 2), result-
ing in generated programs that either won’t function prop-
erly, throw errors, or simply fail 2. However, one or two are
bound to run and execute, at a minimum, some number of
valid instructions. The more successful a program is at exe-
cuting, the more likely it is to continue on and produce off-
spring with code that achieves more successful results.

Figure 3. Decoding a genome as a BF program.

Crossover and Mutation To create offspring, a parent
genome contributes part of its genes to the child, a process
called crossover, as shown in Figure 4. In addition to inher-
iting programming instructions from its parent, each child
can also experience mutation, which is the process of adding
controlled, but random perturbation, to specific genes. This
results in modified behavior of the value of a particular gene,
resulting in a change to the resulting programming instruc-
tion, and thus, the overall program.

Crossover copies forward potentially beneficial parts of
the parent, while mutation offers differing behaviors of in-

2 Most initial programs in the gene pool fail immediately upon being ex-
ecuted. Others may result in endless loops. It is due to these reasons that
exception handling and maximum iteration limits are imposed on the BF
interpreter.

Figure 4. An example of crossover and mutation. The child
genome inherits the first 5 instructions from its parent. One
instruction is mutated.

struction combinations, which may or may not, end up mak-
ing the child programs more successful.

Survival of the Fittest Executable programs are ranked ac-
cording to how well they have performed. As shown in Fig-
ure 5, a particular program that has failed is often imme-
diately removed from the pool of genomes. However, pro-
grams that succeed are carried forward to produce child pro-
grams.3

Figure 5. Programs are weighted by fitness, with the most
successful used for child program generation.

4.2 The Fitness Function
A GA requires a fitness method to determine how well a
generated program performs. This usually involves scoring
the byte-level output of the generated program.4 The score
is calculated by analyzing the output of the program (if
any) and subtracting its value from the desired result. An
example of a byte-by-byte fitness scoring algorithm is shown
in Figure 6.

fitness += 256 - Math.Abs(console[i] -

targetString[i]);

Figure 6. A simple fitness function for testing the output of
a program.

Designing a Fitness Test For any specific GA task, a fit-
ness method is designed by a human, which is then utilized
by the GA engine to evaluate all functional, resulting pro-
grams. This concept is similar to test-driven development,
where unit tests are first created by a developer, prior to writ-
ing program methods. When all unit tests pass, a program

3 In Figure 5, the bottom program is a valid running program that takes one
byte for input, increments it, and then displays it twice as output.
4 Fitness scoring may also include inspecting internal state values of the
child program.
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may be considered to be functionally correct. Likewise, a fit-
ness test for a GA can be considered as a set of unit tests. In
the case of BF-Programmer, a fitness test typically contains a
suite of tests for varying scenarios, which guide the genome
selection, preserving only programs that evaluate well on the
test suite.

Fitness tests can include comparing the output bytes
against the target. They can also include examining state
properties, such as when input was requested, when output
was performed, or even when a program’s internal memory
state is shifted or changed. This incremental flexibility al-
lows for state-specific programs to be generated, and thus,
more complex software to be automatically created.

5. Results
Using BF-Programmer, we were able to generate numerous
simplistic programs. A complete listing of these programs,
their associated program generation time, and the total num-
ber of evolutionary generations required to build them are
shown in Table 2. These results were generated on an Intel
Quad-Core i7 CPU, 2.7GHz, containing 16GB ram with an
x64-based processor [2].

Table 2. BF-Programmer Results

Name Duration (s) Generations

hi 52 5,700
Hi! 7,644 1,219,400
hello 1,713 252,000
hello world 7,702 580,900
reddit 1,362 195,000
Keep Calm Keep Coding 944 21,400
I love all humans 36,000 6,057,200
hello {user} 1,793 42,800
Addition 2,698 92,400
Subtraction 4,305 177,900
Multiply x2 6,353 242,000
Multiply x3 5,165 87,200
XOR 2,095 146,400
Fibonacci 21,862 151,900
If/then conditionals 8,313 46,200
cats are evil 10,209 814,400
Bottles of Beer on the Wall 2,957 61,400
Reverse string 49 2,600
CSV parse 173 9,000
Extract in quotes 6,478 212,100
Extract in quotes 2 9,996 188,400
Trim left of quote 9,030 341,700
XML to JSON 6,866 820,900
Warning countdown 48 900

In this section, we highlight the details of some of the
programs generated in Table 2 to discuss certain novelty we
experienced in generated them.

5.1 Greetings
“Hello World” is usually one of the first programs human
programmers create when they begin learning programming.
As such, we found it fitting to guide BF-Programmer to learn
some basic greetings for its early programs. Rather than
starting with “Hello World”, we first had BF-Programmer
create a more simplistic program that simply output “hi.” It
was successfully after 5,700 generations and the generated
code is shown in Figure 7.

+[+++++-+>++>++-++++++<<]>++.[+.]-.,-#>>]<]

Figure 7. Generated program: “hi”

The generated program fulfilled its requirement to output
the target text, but interestingly included subsequent random
characters, which contained parsing errors, including non-
matching brackets. However, BF-Programmer’s interpreter
computes results until the program fails. In this manner, the
syntax error (which is later on in the code, after a solution
is reached) does not negatively impact its fitness score, and
thus offers a working solution. In fact, the generated code
can be executed in almost any BF interpreter as a valid
working program (provided, warnings are ignored).

Next, we guided BF-Programmer to generate the famous
“hello world” output which was successfully constructed
after 580,900 generations and consists of the code shown in
Figure 8.

-><[>-<+++]->>++++[++++++++++++++++++<+]>.---.

+-+++++++..+++.+>+<><+[+><><>+++++++++.+-<-+++

+[++[.--------.+++.------],.-----]]

Figure 8. Generated program: “hello world”

“I love all humans” As a humorous aside, we asked BF-
Programmer to create the program to output “I love all hu-
mans,” which was successfully generated after 6,057,200
generations. It consists of the code shown in Figure 9. The
fitness method for this example includes a check on the out-
put string length to ensure an exact matching output, without
extraneous text.

+[>+<+++]+>------------.+<+++++++++++++++++++

++++++++++++.>+++++++++++++++++++++++++++++++

+++.+++.+++++++.-----------------.--<.>--.+++

++++++++..---<.>-.+++++++++++++.--------.----

--------.+++++++++++++.+++++.

Figure 9. Generated program: “I love all humans”

5.2 Input-Output Computations
As with most programs, we next guided BF-Programmer
generate programs that performed computations based on
user input. In such programs, the user provides some input
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and the computer program then generates the appropriate
output.

Reversing a String BF-Programmer was able to generate
the program to reverse any string after only 2,600 genera-
tions. The generated code is shown in Figure 10.

+->,>,[>+,],,,,-<[.+<]

Figure 10. Generated program for reversing a string.

When executed, the program prompts the user for input. The
user then types one character at a time until a value of “0” is
entered. A novelty of this program is that it is required to take
variable size input first before performing the majority of
its program logic. However, the program’s internal memory
state must manage the variable input, as the program must
read all input first to locate the final character entered, which
is the first character in the reversed string. The genetic al-
gorithm was able to produce this logic automatically, based
upon the fitness method.

Addition and Subtraction BF-Programmer was able to
generate programs for addition after 92,400 generations
(Figure 11) and subtraction after 177,900 generations.

,>,-[-<+>]<+.

Figure 11. Generated program for performing addition.

If-Then Conditionals with User Input Generating pro-
grams involving more complex programming logic, such as
the ability to perform if-then decisions and actions, requires
a more advanced type of fitness function. However, as de-
scribed in Section 3.1, BF-Programmer’s embedded inter-
preter provides significantly more access to program state
than just its output, which is essential for generating a large
variety of more complex programs.

For example, BF-Programmer was able to produce a pro-
gram which prompts the user for input (e.g., 1, 2 or 3) and
outputs text based on which value was entered, similar to se-
lecting an option from a menu. By entering the value “1”,
the program would output “hi”. Entering “2”, resulted in the
program output of “z”. Entering “3”, resulted in the output
“bye”. The program was generated in 446,200 generations.

The produced code was notably larger than previously
generated programs, containing 650 instructions (although
not all instructions are needed). The larger code was re-
quired, as the conditional branches are contained within in-
dividual blocks of the code.

5.3 Complexity in Fitness Functions
As the complexity of the target program grows, so too does
the fitness function. After all, the fitness function needs to
guide the engine in determining how well a particular child
program matches the targeted solution. For conditionals and

branching, successful program generation required more ad-
vanced techniques within the fitness function.

In particular, a check was needed to examine the inter-
preter’s memory register (i.e., current data pointer via shift
operations), where the distinct number memory registers be-
ing used by the program was counted, providing a bonus
to fitness to favor more memory registers usage over less.
This aided in inspiring diversity amongst child programs.
Additionally, the instruction pointer used for each print com-
mand was recorded and weighed against the fitness score. A
penalty was applied for reuse of the same print command.
This helped to foster diversity and achieve a successful if-
then result.

6. Optimizing Program Generation
When the programs BF-Programmer began generating pro-
duced longer output, we noticed the program generation
time increased significantly. Furthermore, the need to extend
BF-Programmer beyond the classic BF instruction set was
deemed a necessity if we were to have it produce programs
with more interesting features, such as file I/O and network-
ing capabilities.

As such, we extended BF-Programmer to use an extended
BF programming instruction set, which reduced code gen-
eration time and improved code compression due to an in-
creased range of instruction specificity (i.e., fewer instruc-
tions to achieve the same result). However, a disadvantage
of utilizing the extended instruction set is that the gener-
ated programs would be difficult to test in standard inter-
preters. In our case, BF-Programmer’s internally developed
interpreter was modified to support the extended instruction
set, so this was not a practical obstacle.

6.1 BF Extended Type III
Several extensions of BF exist, which are suitable to de-
crease program generation time. Specifically, the speed-
enhancing extension set, BF Extended Type III [8], offers
several programming instructions that aid generation. These
instructions include the ability to immediately set the value
of a particular cell to a multiple of 16, also called “fast cell
initializers”. This aids in allowing a generated program to
quickly reach displayable ASCII range characters for out-
put, thus, decreasing the number of individual increment
programming instructions that would normally be required.

In addition to key instructions taken from BF Extended
Type III, we added several new instructions to support call-
ing functions from within a BF program, allowing for in-
creasingly complex programs to be generated.

Fibonacci Sequence With these extensions in place, BF-
Programmer was able to generate a program to output the
Fibonacci sequence up to 233 5, which was was generated in

5 255 is the max value for a byte, with the next Fibonacci sequence value
being 377.
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,>,$[!>--$<<a>>]4]+,,-[-<+>]<+.$@

Figure 12. Generated program to output the Fibonacci se-
quence from two starting input values.

approximately six hours. The program prompts the user for
input of the two starting values in the sequence. It then out-
puts the next digits in the Fibonacci sequence. The generated
code for this is shown in Figure 12.

7. Related Work
Genetic algorithm based computer programming has al-
ready seen successes in the past, producing software with
qualities similar to that of human-produced results. A key
limitation to producing more advanced programs has been
CPU speed, and thus, generation time. As demonstrated in
“Human-competitive results produced by genetic program-
ming” [14], J.R. Koza describes a variety of programs that
have been developed by genetic algorithms, largely limited
by Moore’s law. However, as increasing CPU speed and
capabilities advance, the complexity of automatically gener-
ated programs are bound to produce more impressive results.

Program synthesis with genetic programming has also
provided solutions in hardware-based niche fields. In “Auto-
mated synthesis of analog electrical circuits by means of ge-
netic programming” [15], the authors describe an automated
process for the creation of analog circuits, using genetically
evolved designs with evolutionary computation to produce
circuit components that typically require human-level intel-
ligence to design. The genetic programming approach used
required the creation of a fitness method to guide the cir-
cuit design and resulting behavior. The metrics of the fitness
method were tied to measurable outputs in order to gran-
ularly guide the resulting circuit design. This is similar to
the process used in our research, where fitness methods are
given specific human-designed and measurable constraints
that guide the genetic algorithm in producing correct and
successful programs.

One of the key components of our research is the usage
of a minimal and esoteric programming language to limit the
complexity of generated programs and foster an optimized
generation process. This has been found useful in other ar-
eas of genetic programming as well, including the simulation
of artificial life, as described in, “An Artificial Life Simula-
tion Library Based on Genetic Algorithm, 3- Character Ge-
netic Code and Biological Hierarchy” [17]. In a simulation
library based on genetic algorithms and biological hierar-
chy, the system “Ragaraja” uses biological concepts to form
an esoteric programming language, consisting of a set of 3-
character instructions. In this manner, the system is able to
simplify the genetic algorithm generation and mutation pro-
cess by limiting the number of possible instruction combi-
nations. This is similar in nature to our usage of an esoteric
programming language, specifically for optimizing the gen-

eration time and limiting the complexity of generated pro-
grams to a constrained set of instructions.

The potential capabilities of ML-based computer pro-
gramming has been known, although as of yet, not fully real-
ized. This was due, in part, to a lacking of CPU power, which
only recently has grown to the point of demonstrating power-
ful results, notably in the field of deep learning. Other factors
remain a challenge to automated programming, as expressed
in, “Open issues in genetic programming” [23], which de-
scribes the slow growth of genetic programming, despite the
successes that it has achieved in various real-world domains.
The BF-Programmer system demonstrates the rapid progress
that can be achieved within the area of ML-based program-
ming, provided a suitable programming language is utilized
in the process.

8. Conclusion
Human-based computer programming is approaching an ob-
solete phase. With ever increasingly complex software and
hardware integrations, the craft of software development will
inevitably surpass the capabilities of humans. As that time
approaches, it will become a necessity to have ML-driven
systems available to relieve the burden of computer pro-
gramming from their human counterparts.

The results presented in this paper, provide early no-
tions about the power that ML-based approaches can bring
to computer programming and that fully functional pro-
grams can indeed be automatically generated, provided
they are supplied with formal input parameters and train-
ing data. While the initial set of programs generated by BF-
Programmer are similar in complexity to a beginner human
programmer, the range of generated programs need not be
limited by time nor intellect. Rather, they are a function of
fitness complexity and computational resources.

In order for ML-based systems to successfully generate
programs, they will require specifically crafted program-
ming languages, fostering genetic algorithm based auto-
mated programming. The current programming languages
we use today, for humans, are insufficiently designed for
ML-based program generation. The approach we use for
typical program language creation needs to be abandoned
and rethought when considering a future of ML-driven pro-
gram generation. Only once this is done, can we begin to
envision a new future of computer software development,
driven by artificial intelligence based systems, with human
creativity and design guiding the way.
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[6] E. D. Dolan and J. J. Moré. Benchmarking optimization soft-
ware with performance profiles. Mathematical programming,
91(2):201–213, 2002.

[7] P. Domingos. The Master Algorithm: How the Quest for the
Ultimate Learning Machine Will Remake Our World. 2015.

[8] Esolangs.org. Bf extended type iii. URL https:

//esolangs.org/wiki/Extended_Brainfuck#

Extended_Type_III.

[9] J. E. Gottschlich, M. P. Herlihy, G. A. Pokam, and J. G.
Siek. Visualizing transactional memory. In Proceedings of
the 21st International Conference on Parallel Architectures
and Compilation Techniques, PACT ’12, pages 159–170, New
York, NY, USA, 2012. ACM. ISBN 978-1-4503-1182-3. URL
http://doi.acm.org/10.1145/2370816.2370842.

[10] S. L. Graham, P. B. Kessler, and M. K. Mckusick. Gprof: A
call graph execution profiler. SIGPLAN Not., 17(6):120–126,
June 1982. ISSN 0362-1340. URL http://doi.acm.org/

10.1145/872726.806987.

[11] J. Jeffers and J. Reinders. Intel Xeon Phi Coprocessor High
Performance Programming. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 1st edition, 2013. ISBN
9780124104143, 9780124104945.

[12] R. Jones and R. Lins. Garbage Collection: Algorithms for
Automatic Dynamic Memory Management. John Wiley &
Sons, Inc., New York, NY, USA, 1996. ISBN 0-471-94148-4.

[13] M. Keating, D. Flynn, R. Aitken, A. Gibbons, and K. Shi. Low
Power Methodology Manual: For System-on-Chip Design.
Springer Publishing Company, Incorporated, 2007. ISBN
0387718184, 9780387718187.

[14] J. R. Koza. Human-competitive results produced by genetic
programming. Genetic Programming and Evolvable Ma-
chines, 11(3-4):251–284, 2010.

[15] J. R. Koza, F. H. Bennett, D. Andre, M. A. Keane, and F. Dun-
lap. Automated synthesis of analog electrical circuits by
means of genetic programming. IEEE Transactions on evo-
lutionary computation, 1(2):109–128, 1997.

[16] L. Lamport. Proving the correctness of multiprocess pro-
grams. IEEE transactions on software engineering, (2):125–
143, 1977.

[17] M. H. Ling. An artificial life simulation library based on
genetic algorithm, 3-character genetic code and biological
hierarchy. The Python Papers, 7:5, 2012.

[18] F. McKeen, I. Alexandrovich, I. Anati, D. Caspi, S. Johnson,
R. Leslie-Hurd, and C. Rozas. Intel&reg; software guard ex-
tensions (intel&reg; sgx) support for dynamic memory man-
agement inside an enclave. In Proceedings of the Hardware
and Architectural Support for Security and Privacy 2016,
HASP 2016, pages 10:1–10:9, New York, NY, USA, 2016.
ACM. ISBN 978-1-4503-4769-3. URL http://doi.acm.

org/10.1145/2948618.2954331.

[19] Z. Michalewicz. Genetic Algorithms Plus Data Structures
Equals Evolution Programs. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 2nd edition, 1994. ISBN 0387580905.

[20] M. Mitchell. An Introduction to Genetic Algorithms. MIT
Press, Cambridge, MA, USA, 1998. ISBN 0262631857.

[21] U. Müller. Brainfuck. URL https://en.wikipedia.org/

wiki/Brainfuck.

[22] H. Nguyen. Gpu Gems 3. Addison-Wesley Professional, first
edition, 2007. ISBN 9780321545428.

[23] M. O’Neill, L. Vanneschi, S. Gustafson, and W. Banzhaf.
Open issues in genetic programming. Genetic Programming
and Evolvable Machines, 11(3-4):339–363, 2010.

[24] H. Patil, C. Pereira, M. Stallcup, G. Lueck, and J. Cownie.
Pinplay: A framework for deterministic replay and repro-
ducible analysis of parallel programs. In Proceedings of
the 8th Annual IEEE/ACM International Symposium on Code
Generation and Optimization, CGO ’10, pages 2–11, New
York, NY, USA, 2010. ACM. ISBN 978-1-60558-635-9. URL
http://doi.acm.org/10.1145/1772954.1772958.

[25] S. J. Russell and P. Norvig. Artificial Intelligence: A Mod-
ern Approach. Pearson Education, 2 edition, 2003. ISBN
0137903952.

[26] M. L. Scott. Programming Language Pragmatics, Third Edi-
tion. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 3rd edition, 2009. ISBN 0123745144, 9780123745149.

[27] J. G. Siek and W. Taha. Gradual typing for functional lan-
guages. In IN SCHEME AND FUNCTIONAL PROGRAM-
MING WORKSHOP, pages 81–92, 2006.

[28] G. P. Stein, G. Hayun, E. Rushinek, and A. Shashua. A
computer vision system on a chip: a case study from the
automotive domain. 2012 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition Workshops, 00:
130, 2005. ISSN 1063-6919.

[29] A. K. Sujeeth, K. J. Brown, H. Lee, T. Rompf, H. Chafi,
M. Odersky, and K. Olukotun. Delite: A compiler architec-
ture for performance-oriented embedded domain-specific lan-
guages. ACM Trans. Embed. Comput. Syst., 13(4s):134:1–
134:25, Apr. 2014. ISSN 1539-9087. URL http://doi.

acm.org/10.1145/2584665.

[30] A. Turing. Turing completeness. URL https://en.

wikipedia.org/wiki/Turing_completeness.

[31] R. M. Yoo, C. J. Hughes, K. Lai, and R. Rajwar. Performance
evaluation of intel&reg; transactional synchronization exten-
sions for high-performance computing. In Proceedings of the
International Conference on High Performance Computing,

9 2017/4/4



Networking, Storage and Analysis, SC ’13, pages 19:1–19:11,
New York, NY, USA, 2013. ACM. ISBN 978-1-4503-2378-9.
URL http://doi.acm.org/10.1145/2503210.2503232.

10 2017/4/4


